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Abstract 

An analytical method is proposed to obtain quanti- 
tatively the radial distribution function (RDF) at large 
distances for liquids and amorphous materials from the 
structure factor [S(q)] data in the region of its main 
peak only. The RDF's  obtained prove to be unaffected 
by the random spread of the experimental points at the 
tail of S(q). The method is illustrated for a number of 
simple liquids and for liquid and amorphous solid 
water. The application of the method to the S(q) extra- 
polation to the low-q region and the problem of the 
experimental determination of the direct correlation 
function are discussed. 

Introduction 

The problem of determination of the radial distribution 
function (RDF) for a liquid or amorphous material 
from the structure factor S(q) (q = 47r sin 0/2) consists 
in the computation of the Fourier transform 

2 
47rprh(r)=- ~ q[S(q)-  1]sinqrdq, (1) 

7[ , )  
0 

where p is the average density, r the interparticle 
distance and g(r) = h(r) + 1 the pair correlation 
function. Formula (1) requires experimental deter- 
mination of S(q) over as large a range of q as possible. 
However, the experimental S(q) is distorted at large q 
by a rather large random deviation (noise) which is still 
more pronounced in the integrand q[S(q) - 1] in (1). It 
is possible to represent the noise error of the RDF 
computation in the form (Choudry, Banerjee & 
Ailawadi, 1976; Konnert & Karle, 1973) 

A[4ztprh(r)l 2Aq Z qi A S (qi) sin qi r (2) 
7~ 

i 

with summation over the discrete experimental values 
of qi. Here AS(qi) is the random deviation of S(q) at 
the point qi and Aq is a step of the numerical 
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integration in (1). It is seen from (2) that the random 
errors in S(q) result in undamped sinusoidal terms in 
the calculated RDF, the maximum contribution being 
from errors at large q. Such noise, together with 
termination errors, distorts the picture of the RDF. To 
eliminate the above errors one must apply to S(q) 
various smoothing procedures (Narten, Vaslow & 
Levy, 1973; Yarnell, Katz, Wenzel & Koenig, 1973; 
Greenfield, Wellendorf & Wieser, 1971), which are 
often rather refined and have some elements of 
arbitrariness. 

The errors in the RDF, arising from the noise at the 
tail of S(q), are most pronounced at large r because of 
the rapid damping of the RDF oscillations in non- 
crystalline substances. But the tail of S(q) in itself 
produces a negligible contribution to the tail of the 
RDF since the latter is largely defined by the location 
and shape of the main peak of S(q), the most narrow 
among the others (Verlet, ]968). This fact allows us to 
suggest a method for the computation of the RDF at 
large r which operates with the S(q) data in the region 
of the main peak only, where experiment has the best 
accuracy. In such a way, the RDF distortion by the 
random errors at the tail of S(q) is entirely eliminated. 

The idea of the method is as follows. It is possible to 
write an analytical formula for the RDF asymptotic 
behaviour containing a set of parameters. The Fourier 
transform of this formula gives the analytical form of 
S(q) in the region of its main peak. The values of 
parameters are obtained by a least-squares fit of the 
S(q) experimental data. Then the RDF at large r is 
calculated with these parameters. It is found that the 
RDF is determined quantitatively by this method 
starting from the second or third peak. 

This formalism is described in the next section and 
applied to some simple liquids. The third section 
considers its application to the more complicated case 
of liquid and amorphous solid water. In addition to the 
determination of the RDF at large r, the proposed 
formalism allows us to extrapolate the structure factor 
in the low-q region. In the fourth section we discuss the 
results obtained by this method and their application to 
the computation of the direct correlation function C(r). 
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Simple liquids 

The problem of the RDF asymptotic behaviour was 
analysed by Verlet (1968), Fisher (1964), Throop & 
Fisk (1972), Perry & Throop (1972) and Nezbeda 
(1977), and their results can be summarized as follows. 
The exact form of the RDF asymptote is unknown for 
a liquid with arbitrary intermolecular potential. It can 
only be shown that the RDF has a form of damped 
oscillations at large r if the pair potential is of a short- 
range character and the density is sufficiently high. The 
most general form of the oscillating RDF asymptote 
was obtained by Fisher (1964) 

l ' h a s ( r ) :  ~. a l i exp( - -a2 i r ) s in (a3 i r  + a4i). (3) 
i 

In particular, the same form has the asymptote for a 
liquid of hard spheres (Perry & Throop, 1972). The 
term with the smallest a2 usually dominates in (3) at 
large r. However, as is shown below, it is necessary to 
consider the other terms also to obtain the correct 
formula for S(q). 

At present (3) has a sufficiently good empirical basis. 
It gives a good description of the RDF obtained by the 
molecular dynamics method for a dense system of 
particles which interact through a Lennard-Jones 
potential (Verlet, 1968). In addition, the experimental 
RDF curves at large r have the same form for dense 
simple liquids together with those calculated in a quasi- 
crystalline model (Medvedev & Naberukhin, 1977). 
The results of this paper also provide an empirical 
justification of (3). 

Separating the term Sas(q) in S(q)  which corres- 
ponds to the RDF asymptote (3), it is possible to write 

q[ S(q) -- 1] = qS~s(q ) + q[ Sres(q) - 1] 
oO 

= 4zrpf r[has(r) + hres(r)] sin qr dr. 
0 

Sas (q) can be calculated in an analytical form: 

Sas(q ) = 4z~p ~ S~s(q), 
i 

S~s(q) = ali[2a2ia3icos a4 i + (a2 i_  a]i + q2) sin a4i] 

× {[a~i + (q--a3i)2][a~i + (q + a3i)2]}-1.(4) 

Each term in (4) describes some peak in S(q).  The 
parameter a 1 determines its intensity, a 2 the width, a 3 
the location and a 4 its asymmetry. The term having the 
smallest parameters a 2 and a 3 (i  = 1) corresponds to the 
first peak in S(q).  However, other terms (i > 1) also 
give a significant contribution to the first peak region. 
The magnitude of the corresponding terms in the RDF 
tail (3) is much less than the contribution due to the 
first peak because a2i >> a2~, but owing to the same 
condition the peaks with i > 1 in the structure factor (4) 

are very wide. For the computations we retained the 
first two terms in (4) in explicit form and the others 
were represented as a series expansion at low q up to 
the quadratic term. The final result is 

2 

= Sas(q ) (5) Sas(q ) 4zrp ~. + bq 2 + c. 
i = 1  

The parameters of this formula were obtained by 
least-squares fitting to the first experimental peak of 
S(q). The parameters of the term with i = 1 are 
determined with reasonable accuracy because it 
describes the main portion of the first peak. The second 
term in the sum ( i =  2) produces only some back- 
ground under the main peak of S(q).  Therefore, we 
introduced a restriction in the fitting procedure in order 
that the maximum of this t e r m  (a32) should be located 
under the second peak of S(q).  The following fact may 
serve as some justification of this. It is possible to 
obtain theoretically the exact values of the parameters 
of (3) for the Percus-Yevick hard-sphere liquid with the 
method of Perry & Throop (1972). The peaks of S~s(q) 
in (4) were found to be situated exactly under the 
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Fig. 1. Structure factors of simple dense liquids in the region of the 
main peak: the points represent experiment; the solid lines give 
computation according to (5). The dashed line shows the con- 
tribution of the first term of the sum (5) (i = 1), the dashed-and- 
dotted line that of the second one (i = 2). Experimental data are 
obtained for Ar from Yarnell, Katz, Wenzel & Koenig (1973), 
for Na from Greenfield, Wellendorf & Wieser (1971) (T = 373 
K), for Ne from de Graaf & Mozer (1971) (P = 8 MPa), and for 
A1 from Waseda & Suzuki (1973) ( T =  1023 K). 
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Table 1. Parameters of(5) obtained by the fitting to the 
experimental S (q) in the region o f  the main peak 

I zJ = ~ [S,,eo~(qs) - S~xp(qj)]z/ , N is the number  ofexper imenta l  points. 
j = l  

Ar Ne Na  AI 

art 7.1385 6.1541 6 .4084 5.9938 
azt 0 .1857 0 .3032  0 .1765 0 .3236 
a3t 1.9677 2.3015 2 .0044 2.6677 
a4t 0-3213 0 .4460  0 .3320  0 .3210  
at2 14.9681 13.2173 12-0088 11.9960 
a22 0-6743 1- 3873 O. 7253 O- 7041 
a3z 3.6847 4 .4513 3.6808 4 .9352  
a4z 0.1841 0 .1153 0-1659 0.1801 
b 0-6634 x 10 -3 0.9401 x 10 -~ 0 .4329 x 10 -3 0 .4554  x 10 -3 
c 0 .6656 x 10 -t 0 .8477  x 10 - t  0 .4056 x 10 - t  0 .2765 x 10 -1 
S(0)  0-0522 0-117 0 .024 0 .017 
A 0 .0117  0 .0170  0 .0169 0-0323 

maxima of the calculated total structure factor and no 
peaks were located in intermediate positions. In 
addition, al~ was eliminated from the set of variable 
parameters in (5) with the known value of S(0) = 
pkTx  r (k is Boltzmann's constant, K r is the isothermal 
compressibility). 

The results of computations according to (5) are 
compared with the experimental S(q) for various 
simple liquids (Fig. 1). The parameters of (5) for these 
liquids are listed in Table 1. The close correspondence 
of the experimental and calculated curves demonstrates 
that (5) is indeed a rather exact analytical rep- 
resentation for the main peak of the structure factor. 
This fact provides us with a reliable method for deter- 
mination of the RDF asymptote (3) parameters. 
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Fig. 2. The RDF's 4npr z h(r) computed from (6) from the total S(q) 
(dots) and calculated from (3) (solid lines). The upper limit of inte- 
gration qmax in (6) is for Ar 11.0, for Na 6.0, for Ne 8.15, and 
for AI 8.55 /~-L Only the tails of the RDF's beginning from the 
second peak are shown. The solid lines are the sums of two 
damped sinusoidal curves with the parameters from Table 1. The 
contribution of the second curve is already negligible in the region 
of the third peak. The dashed line (Ne graph) represents for 
comparison the results of direct calculation from (1) using the 
total table of S(q) from de Graaf & Mozer (1971). 

It is interesting to note that the first term in (5) (i = 
1) produces a negative contribution at low q as seen in 
Fig. 1. The same is true for the hard-sphere liquid at 
nigh density where the parameters of (5) are obtained 
theoretically (Perry & Throop, 1972). Probably this 
implies that terms of the sum (5) by themselves, in 
contrast to the total structure factor, do not have the 
meaning of diffraction intensity. The physical meaning 
of this expansion is not clear and one must consider it 
at present as purely formal. 

Fig. 2 allows one to compare the curves 4npr2h(r) 
for the above liquids computed from the total S(q) with 
those obtained according to (3) with the parameters 
taken from Table 1. In the first case, when calculating 
the Fourier integral (1) with the finite upper limit qmax, 
a procedure was employed analogous to that described 
by Narten, Venkatesh & Rice (1976) to minimize the 
termination error. It can be written as 

4nprh(r)= F[S'(q) -- ~'l(q)l + F,(r), (6) 

where F denotes the symbol of the Fourier transform, 
~ ( q ) = q [ S ( q ) -  1], 

2 

~1 (q) = F - I  [F1 (r)] = ~ a i exp (--a i q2) sin qrmi, 
i = 1  

2 

F 1 (r) = ~ ai(4nni)-VZ{exp [--(r -- rmi)2/4ai] 
i = 1  

--exp[--(r  + r,ni)z/4ai] }. (7) 

F~(r) is the first, the most narrow, peak of the RDF 
considered as the sum of two Gaussians to represent its 
asymmetry. Now the Fourier transform of the dif- 
ference ~'(q) - ~ql (q) in (6) does not contain this peak, 
hence removing the most pronounced termination 
ripples produced by it. The parameters a, a and r m in 
(7) were obtained by fitting (7) to the experimental 
curve ~(q) at large q, since ~1 (q) is its asymptotic form. 
The difference ~'(q) - ~ (q) tends rapidly to zero when 
q becomes large. But in the real experimental data there 
are undamped irregular deviations from zero after some 
value qmax caused by the random errors. This qmax was 
chosen as the upper limit in the Fourier integral in (6). 

It can be seen from Fig. 2 that there is good agree- 
ment between the RDF ' s  calculated from the total S(q) 
and reconstructed on the basis of data belonging only 
to the region of its main peak. It is important that the 
proposed procedure gives sufficiently accurate values 
of the RDF in the region of the second or third peak 
though, strictly speaking, (3) is asymptotic. Thus, we 
have an additional justification of (3) as the analytical 
form of the RDF asymptote. Fig. 2 shows that this 
method allows us to obtain the correct RDF up to a 
very large r while the R D F  tails, when calculated from 
the total S(q), are aggravated by the irregular ripples, 
e.g. for Ne and especially for AI. 
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Liquid and amorphous solid water 

At present there are neither theoretical nor empirical 
justifications for the RDF asymptotic form of liquids or 
amorphous materials with directional interactions 
between their molecules. We have postulated that (3) 
and (4) are valid also for these systems. Such an 
approach will be tested by a comparison of the 
computational results with experiment. 

The molecular structure factors of liquid and 
amorphous solid water, obtained by X-ray diffraction 
(Narten & Levy, 1971; Narten, Venkatesh & Rice, 
1976), differ strongly from the analogous functions of 
simple liquids. They have a doublet structure of the 
main peak. To describe this doublet by a formula 
similar to (5), it is necessary to retain one additional 
term in (4) in the explicit form. Thus, we have now the 
sum Y.~= 1 in the modified computational formula (5); 
the other details of obtaining the parameters and of 
the RDF calculation at large r remain unchanged. 

The results of computations for liquid water at 298 
K are shown in Figs. 3 and 4. Here, as in simple liquids, 
the modified formula (5) gives an excellent description 
of the double maximum of S(q) (Fig. 3). The RDF 
curve calculated from (3) represents correctly the 
complicated picture of the water RDF in the region of r 
just after the first peak of the nearest neighbours. The 
two components of the doublet in S(q) have approxi- 
mately equal intensities and widths (parameters a 1 and 
a z in Table 2). Therefore, their contributions to the 
RDF represent two damped sinusoidal curves having 
comparable intensities but different frequencies and 
p h a s e s  ( a  3 and a 4 in Table 2). Interference of these 
curves shows the behaviour of the RDF at large r which 
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Fig. 3. The structure factor of liquid water at 298 K: the points 
represent experiment (Narten & Levy, 1971), the solid line gives 
calculation according to modified formula (5) with the 
parameters given in Table 2. The dashed line corresponds to the 
term with i = 1, dashed-and-dotted line to i = 2, dotted line to 
i = 3 .  

is completely different from that in simple liquids. The 
second and third peaks turn out to be of the same 
heights. A deep minimum is observed between them, 
much deeper than the gap between the first and second 
peaks. The amplitude of the RDF oscillations 
diminishes abruptly at r > 9 A because the con- 
tributions from the two peaks in S(q) prove to be out of 
phase. The RDF curve computed from the total S(q) 
demonstrates at r > 9 A only irregular oscillations 
caused by the experimental errors in S(q), whereas the 
proposed method allows one to obtain the RDF up to 
larger distances. 

The analogous interference effect of the contri- 
butions of (3) takes place also on the RDF's  of water at 
other temperatures up to 373 K until the main 
maximum of S(q) remains double-peaked (Fig. 5). All 
the curves show the same feature: the amplitude of the 
RDF oscillations diminishes abruptly after the third 
peak. Moreover, the amplitude of the second peak in 
the vicinity of 4.5 A becomes even less than that for the 
third when the temperature increases. These facts are in 
contrast to the picture of monotonous damping of the 
RDF oscillations in simple liquids and are undoubtedly 
significant for understanding the water structure. The 
non-trivial facts mentioned can be considered as quite 
reliable because they are defined exclusively by the 
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Fig. 4.(a) RDF 4npr 2 h(r) for liquid water at 298 K: the points give 
the result computed from the total S(q) according to (6) with qmax 
= 10.8 A -~, the solid line is calculated as the sum of the three 
terms in (3) with parameters from Table 2. (b) The contributions 
of the separate terms in (3) corresponding to the peaks in the 
decomposition of S(q) in Fig. 3. Dashed line: i = 1; dashed-and- 
dotted: i = 2; dotted: i = 3. 
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Table 2. Parameters of the modified formula (5 ) fo r  
liquid water at 298 K 

i all a21 a31 a4i 

I 3.6722 0.4182 1.8878 0.8000 
2 5.1008 0.4534 2.9390 0.02354 
3 8.0355 1.0205 4-6107 0.0321 

b=0.00313;  c = 0.0878; S(0) = 0.0635; A = 0.0045. 

shape of the main double peak which is the most 
accurately measured part of the experimental S(q). 

The main double peak of S(q) for one of the samples 
of amorphous solid water according to data of Narten, 
Venkatesh & Rice (1976) is shown in Fig. 6. It is 
described accurately by the modified formula (5) as it 
was in liquid water. But in the solid the components of 
the doublet are narrower than in the liquid. They 
produce more slowly damped sinusoidal contributions 
to the RDF and the interference of these terms gives a 
rather complicated picture of the observed oscillations 
up to large r (Fig. 7). Here, as above, the RDF 
calculated by the proposed procedure accurately 
repeats the significant features of the RDF computed 
directly from (1) and smooths the small irregular details 
caused by errors of experiment and the numerical 
Fourier transform. 

2.0 Slq) 

11) 

i ,, L i 
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Fig. 6. The data analogous to those in Fig. 3 for amorphous solid 
water at 77/77 K (Narten, Venkatesh & Rice, 1976). 
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Fig. 5. RDF's of liquid water at various temperatures computed 
from the S(q) data of Narten & Levy (1971). The dots and lines 
represent the same as in Fig. 4(a). The RDF at 373 K (dots) is 
obtained by direct calculation from (1) from the total table of 
S(q) (qmax = 16 A-l). It demonstrates the influence of errors in 
S(q) on the RDF at large r. 
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Fig. 7. RDF's 4~zpr 2 h(r) for two samples of amorphous solid water 
(the notations of samples correspond to those of Narten, 
Venkatesh & Rice, 1976). The points give the data evaluated 
from the table for goo(r) by Narten, Venkatesh & Rice (1976), the 
solid lines show the computations from (3) analogous to those of 
liquid water. 
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Problem of extrapolation of the structure factor to the 
Iow-q region and computation of the direct correlation 

function 

Equation (5) allows one to extrapolate S(q) to the 
experimentally inaccessible region of very small q. This 
formula has some advantage compared with series 
expansions of S(q) or S-l(q) usually applied for such a 
purpose (Mikolaj & Pings, 1967; Albers & Mountain, 
1972). Indeed, to determine the parameters of (5) we 
use the experimental data in the region of the main peak 
of S(q), whereas in the mentioned methods one has to 
use only the data at the lowest experimentally ac- 
cessible q, where the accuracy of their determination is 
rather low or the series expansion is an inadequate 
approximation for S (q). 

It is well known that the low-q region in S(q) is of 
decisive influence for the calculation of the direct 
correlation function C(r) and pair potential in liquids 
(Enderby, 1968, 1972; March, 1968; Ballentine & 
Jones, 1973). Therefore, it is interesting to investigate 
what result gives extrapolation according to (5) for 
these functions. Such results are displayed for liquid Ar 
and Na in Figs. 8 and 9. For comparison we show also 

f I ~ 1 

C(R) ~.. 

-~ i '  "~15 U(R)IkT 
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t L ..I . L _ _ ~  
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O 

R(A) 
Fig. 8. At the top: C(r) for Ar at 85 K. The points give the results 

calculated directly from the S(q) data of Yarnell, Katz, Wenzel & 
Koenig (1973); the solid line gives the computation after extra- 
polation of S(q) in the region of low q by (5) with parameters 
from Table 1. Up to q = 1.3 A -1 the extrapolated values were 
used and at q > 1.3 A -I the experimental ones. The scale in the 
ordinate axis changes when the curve C(r) intersects the r axis 
for the first time. At the bottom: the curves of the pair potential 
obtained from C(r) and h(r) in PY and HNC approximations. 
The open circles represent the Lennard-Jones potential with 
parameters e/k = 119.8 K and a = 3.405 A (Verlet, 1968). 

the results obtained directly from the data for S(q) 
tabulated in the papers of Yarnell, Katz, Wenzel & 
Koenig (1973) and Greenfield, Wellendorf & Weiser 
(1971), where the extrapolation to low q was made by 
hand by the smooth prolongation of the accessible 
experimental data. The curve C(r) for Ar computed 
from S(q) according to the extrapolation procedure (5) 
has an unusual form: at r _> 5.5 A it becomes negative. 
As a result, the pair potential computed from C(r) and 
g(r) in the Percus-Yevick (PY) and hyper-netted chain 
(HNC) approximations has positive values at the same 
r (Fig. 8) and is considerably different from the 
Lennard-Jones potential which is the most convenient 
form of the effective pair interaction for Ar (Yarnell, 
Katz, Wenzel & Koenig, 1973; Verlet, 1968). On the 
contrary, for Na (Fig. 9) the negative values of C(r) at 
5.5 < r < 5.9 A are too small, though it is conventional 
to assume that C(r) must oscillate around the r axis in 
metallic liquids (Enderby, 1968; March, 1968). 

It may seem that (5) gives an erroneous extra- 
polation of S(q) in the low-q region and this settles the 
question. However, the problem is, in our opinion, more 
complicated. Here we deal with a calculation of C(r) in 
fine detail [in comparison with the amplitude C(0)]. 
Such details are so sensitive to the slightest differences 
in the shape of S (q) on the left of the main peak that the 
extrapolation may be hardly a satisfactory method to 
make up a deficiency in the experimental data. The 
deviations of the dots from the solid lines at q < 1-3 
A -~ in Fig. 1 for Ar and Na are evidently less than the 
uncertainty of the experimental data. Nevertheless, 
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Fig. 9. The same as in Fig. 8 for Na at 373 K (Greenfield, 
Wellendorf & Wieser, 1971). 
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these differences produce the fundamental changes in 
the form of C(r) (Figs. 8 and 9). 

The possibility of direct calculation of C(r) from the 
diffraction experimental data in dense liquids is deter- 
mined essentially by the accuracy which can be 
achieved in S(q) at low q. But S(q) is not obtained 
immediately in the experiment. When extracting S(q) 
from the measured scattered intensity one has to take 
into account in an approximate manner various 
collateral effects (Yarnell, Katz, Wenzel & Koenig, 
1973; Pings, 1968). As a result, the near to zero values 
of S(q) in the low-q region are untrustworthy due to 
systematic errors which are unavoidable here. Such 
errors are a much more serious and hardly removable 
source of the uncertainty in the S(q) data than the 
random spread of the experimental points. The last can 
be reduced to a minimum (Greenfield, Wellendorf & 
Wieser, 1971) and it is also possible to estimate its 
influence on the results of calculations (Choudry, 
Banerjee & Ailawadi, 1976; Ballentine & Jones, 1973). 
In addition, it is necessary to note that the majority of 
the published structure factors was treated with the 
procedure which eliminates the low-frequency terms 
producing the peaks in h(r) near r = 0 (Yarnell, Katz, 
Wenzel & Koenig, 1973; Kaplow, Strong & Averbach, 
1965). This procedure considerably distorts S(q) in the 
low-q region (Enderby, 1972). 

Thus, the diffraction experiment is hardly able to 
provide at present the necessary accuracy in S(q) to 
solve empirically the question about the detailed form 
of C(r). Therefore, our knowledge about this function 
in dense fluids is intuitive rather than experimentally 
substantiated. 

Conelusions 

The method proposed in this paper allows one to obtain 
quantitatively the RDF of liquids and amorphous 
materials beginning from the second or third peak on 
the basis of the experimental structure factor in the 
region of its main peak only. Noted especially will be 
the non-trivial fact that the same functions [formulae 
(3) and (4)] are found to be excellent approximations of 
S(q) and the RDF both for simple dense fluids and for 
liquid and amorphous substances with complicated 
open packing of molecules. Thus, the S(q) data beyond 
the first diffraction peak prove to be redundant 
information for the purpose of the RDF computation at 
large r. The random scattering of experimental data 

which is most pronounced in this region of q values 
makes the result worse when computing the RDF 
directly from (1). 
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